Monitoring and analysis of MRR-based feedrate optimization approach and effects of cutting conditions using acoustic sound pressure level in free-form surface milling
نویسنده
چکیده
Sculptured surface machining (SSM) is one of the continually used manufacturing processes for die/mold, aerospace(especially turbine blades), precision machine design, bio-medical devices and automotive industries. Developments of machining technologies for quality enhancement of machining results has become a very important fact in current real industry. Off-line feedrate adjusting is a new methodology to automatically decide optimum feedrates for G-code modification. Off-line re-adjusting feedrates based on changing surface geometry (concave, convex and flat surface) in sculptured surface machining could decrease milling time, reduce tool wear, deflection and improve surface texture quality. Monitoring of sculptured surface milling processes is a critical requirement in the implementation of any unmanned operation in a shop floor. During the last years, notable efforts have been made to develop reliable and robust monitoring systems based on different types of sensors such as cutting force and torque, motor current and effective power, vibrations, acoustic emission or audible sound energy. In automated machining processes, condition monitoring not only reduces the production costs by reducing downtime and unnecessary tool changes, but also improves the product quality by eliminating chatter and poor surface finish. This study examines the possibility of using sound pressure level to monitor the sculptured surface milling process at different machining conditions and to evaluate MRR based feedrate optimization applications. In this paper, audible sound is investigated as a dynamic approach is established to enhance our understanding of the relationship among cutting conditions, tool deflection, cutting forces and the sound signal generated from the cutting process.
منابع مشابه
Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts
Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...
متن کاملNumerical Modeling and Multi Objective Optimization of Face Milling of AISI 304 Steel
There is a requirement to find accurate parameters to accomplish precise dimensional accuracy, excellent surface integrity and maximum MRR. This work studies the influence of various cutting parameters on output parameters like Cutting force, Surface roughness, Flatness, and Material removal rate while face milling. A detailed finite element model was developed to simulate the face milling proc...
متن کاملModeling and Analysis for Five-Axis High Speed Milling Process Based on Cutter Optimal Kinematics Performance
The overall goal of the research is the integration of geometric and mechanistic models for cutting process simulation and feedrate optimization. Five-axis milling methods are used in industries such as aerospace, automotive and mold for free-form surface machining. In these process, surface quality and material removal rate are of very important. Conservative cutting parameters have been mostl...
متن کاملCalculation of the drop in sound pressure level and frequency analysis of aerospace engine test cell (Research Article)
Aerospace engines testing is a source of noise pollution and determining the low frequency acoustic characteristics of the test cell, plays an important role in optimally control of the sound field and reducing the level of sound pressure and pollution. In this study, the drop in average sound pressure level is numerically predicted by constructing a test cell according to ISO 140 standard. To ...
متن کاملResponse Ant Colony Optimization of End Milling Surface Roughness
Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Respo...
متن کامل